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A Rasch Hierarchical Measurement Model

Both item response theory and hierarchical linear modeling are used in a variety of social science

research applications. The use of item response theory (IRT) allows connections to be made between

observed categorical responses provided by students and an underlying unobservable trait, such as ability

or attitude (Hambleton & Swaminathan, 1985; Lord & Novick, 1968). Hierarchical linear modeling

(FILM) allows the natural multilevel structure present in so much social science data to be represented

formally in data analysis (Bryk & Raudenbush, 1992; Goldstein, 1987; Longford, 1993). In some cases, a

researcher may wish to study the effects of covariates on the latent trait of interest. These covariates may

include information about the respondents, as well as contextual information. This paper will present

both a model that integrates an IRT and hierarchical linear model and a method of estimating model

parameter values that does not rely on large-sample theory and Normal approximations.

Item response theory models and hierarchical linear models can be combined to model the effect

of multilevel covariates on a latent trait. We may wish to examine relationships between person ability

estimates and person-level and contextual-level characteristics that may affect these ability estimates.

Alternatively, we may wish to model data obtained from the same individuals across repeated

questionnaire administrations. We may even wish to study the effect of person characteristics on ability

estimates over time.

In particular, the model resulting from the integration of a hierarchical linear model and a one-

parameter logistic item response model will be presented in this paper. This model will be referred to as a

Rasch hierarchical measurement model (HMM). The particular Rasch HMM developed in this study

incorporates a Rasch model (Rasch, 1960) and a two-level hierarchical linear model having a random

intercept at the first level, with no additional fixed or random covariates at either level. This form of a

hierarchical linear model is known as a one-way analysis of variance with random effects. The Rasch

model is appropriate for modeling dichotomous responses and models the probability of an individual's

correct response on a dichotomous item. The logistic item characteristic curve, a function of ability,

forms the boundary between the probability areas of answering an item incorrectly and answering the
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item correctly. This one-parameter logistic model assumes that the discriminations of all items are

assumed to be equal to one.

The model resulting from the integration of a hierarchical linear model and a Rasch model allows

one to estimate all model parameters simultaneously and therefore incorporate the standard errors of the

latent trait estimates into the total variance of the model. In the Rasch IIMM, the expected value of the

latent trait parameter is replaced with a one-way ANOVA with random effects. The Rasch HM.M can

allow one, for example, to correctly model the variances of person-level and school-level error while

estimating latent trait parameters of student ability estimates or student attitudes from student responses to

a questionnaire of dichotomous items.

Researchers have expanded traditional IRT models in a number of ways that are appropriate in a

variety of applications. Person-level characteristics have been included in IRT models to help improve

estimation of item difficulty parameters, or to model the effects of person characteristics upon the

estimated latent trait measures (Mislevy, 1987; Patz & Junker, 1999a; Patz & Junker, 1999b). The IRT

model has also been reformulated as a two-level model consisting of items nested within people in order

to model measurement error among and between these two levels (Adams, Wilson, & Wu, 1997; Kamata,

1998). Kamata (1998) takes this last example a step further by including a third contextual level, which is

illustrated by Cheong & Raudenbush (2000).

A variety of methods have been used to estimate the parameters of these expanded IRT models.

A two-step approach has sometimes been used. Using this strategy, an IRT model is used to estimate

latent trait parameters for each person, which are then with a hierarchical linear model. The standard

errors of the latent trait estimates are not modeled in the second step, resulting in biased parameter

estimates. The extent of this bias can be especially large when total sample size is small or when the

hierarchical structure is sparsely populated. Others have utilized methods that rely on large-sample

approximations or empirical Bayes approaches (Adams et al., 1997; Cheong & Raudenbush, 2000;

Kamata, 1998; Mislevy, 1987; Zwinderman, 1991; Zwinderman, 1997). The use of these particular

estimation methods, because they depend on Normal distribution theory, introduces constraints on the
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minimum allowable sample size or the degree to which the hierarchical structure can be sparsely

populated. In addition, complex integrations are usually required within the context of the solution

strategy.

Bayesian methods, a third approach to estimating model parameters of an expanded IRT model,

do not rely on Normal approximations. Bayesian methods allow an easier solution strategy that produces

unbiased estimates and eliminates the need for directly computing complex integrations (Bayes, 1763;

Gelman, Carlin, Stern, & Rubin, 1995). Values for the parameters of the Rasch hierarchical measurement

model will be estimated using Bayesian data analysis methods.

The Bayesian paradigm assumes the model parameters are random quantities having

distributions. The distributions characterizing these unknown parameters are conditional on the observed

data, which are assumed to be fixed. Bayesian inference supplements the likelihood equation with prior

beliefs the analyst may have about the distributions of the parameters, via prior distributions. The

likelihood and prior distributions are combined according to Bayes' theorem to produce the posterior

distribution of the model parameters to be estimated. In contrast, Normal theory or the frequentist method

postulates that the true values of the parameters are fixed and the data are random, and rely on large-

sample approximations to produce estimates of model parameters. Empirical Bayesian methods make use

of both paradigms. A subset of parameters are estimated and treated as fixed and known values in a

subsequent Bayesian data analysis technique to estimate the remaining unknown parameters. Typically,

estimates of the first subset of model parameters are obtained using frequentist methods that rely on

approximations.

Markov Chain Monte Carlo (MCMC) techniques are particular Bayesian data analysis methods

that are utilized to estimate model parameters. In contrast to frequentist methods that produce a model

parameter estimate and a standard error of the estimate, MCMC techniques can be used to produce the

entire posterior distribution of the model parameter estimate. Gibbs sampling, a specific MCMC

technique, is a method for generating random variables from a distribution by sampling from the

collection of full conditional distributions of the complete posterior distribution (Gelfand et al., 1990). In

5



4

complex models such as the case of the Rasch hierarchical measurement model, a complicated posterior

distribution can be represented as a collection of conditional probability distributions having standard

distributional forms. A single sampled data point is drawn from the conditional probability distribution of

each parameter, conditional on the values of the collection of remaining parameters and the data. The

marginal probability distributions of the parameters can be constructed from the random draws after the

Markov chain has converged.

Bayesian data analysis methods were used to produce parameter estimates of the Rasch

hierarchical measurement model. In particular, estimates of the parameters were found using Gibbs

sampling. If the parameter does not have a conditional distribution of a common distributional form (the

latent trait parameters and the item difficulty parameters), the Metropolis-Hastings algorithm was utilized

to generate a random draw from the conditional distribution (Hastings, 1970; Metropolis et al., 1953).

Patz & Junker (1999b) estimate parameters for a two-parameter logistic model using the combination of

these particular Bayesian methods, and provide a detailed description of these MCMC methods within the

context of IRT models.

Construction of the Posterior & Full Conditional Distributions

As a first step in Bayesian data analysis, the prior distributions for all model parameters must be

specified in order to form a posterior density. For the latent trait parameter, it is sensible to assume that

the latent trait of individual n, On is drawn from a normal distribution (Lord & Novick, 1968) with

unknown mean and variance,

Pe(en)- Normal(,ue,o-02) (1)

Specific prior distributions for the hyperparameters of the latent trait distribution will be assigned later;

for now, these prior distributions will be noted merely as p(uo) and p(o-2).

Typically, item difficulty parameters range between 4 and +4 standard deviations and can be

modeled by a unimodal symmetric distribution (Baker, 1992). Consequently, a normal prior distribution

will be assigned to the item difficulty parameters,
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Normal(ii, CT ) . (2)

Upon examining the Rasch model, it is clear that the model is unidentified when estimates for all latent

trait and item difficutly parameters are unknown. This difficulty can be addressed by assuming that the

mean of the item parameters is zero and the variance is one. This constraint can be directly incorporated

into the prior distribution for the item difficulty parameters (Box & Tiao, 1973).

The use of Gibbs sampling requires that all full conditional distributions of the model parameters

be determined. Consider the case where students (levelL1) are nested within classrooms (level-2), and the

outcome variable matrix consists of the dichotomous response strings students provide on an I item test.

Given the N xI matrix x for N
k

n
k

individuals answering I items, and assuming conditional
=1

independence among the responses, the likelihood of observing the response string x for N students

nested within K classrooms is

K nL I

exp x,,k (0,k
k=1 j=1 1=1

,e(0,1X)= P(Xit93)= K nk I

ullni+exp(0,k
k=1 1=1 1=1

(3)

This is very similar to the likelihood equation for a one-parameter logistic item response model, with the

addition of an extra indexing variable k. The unknown parameters in the likelihood include the latent trait

variables Band the item difficulty parameters 4. Student n's latent trait parameter can be modeled with a

one-way ANOVA with random effects. The latent trait parameter of group k is expected to have a value

ak and a variance cre2 . The random intercept ak at the student level is in turn modeled by a linear

equation, and is expected to have a mean value of yoo and a variance of rot),

elk = ak Elk

e Normal (0,01),

ak =Too+ gok

Sok Normal (0,1-0,)
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The posterior distribution of the Rasch HMI is the product of the likelihood equation and the prior

distributions of all unknown parameters,

P(,t9,cr Too, 0-,2, Too, 01 I x) oc

K nk

nn P () P(0 i ak ,0-,2)p(ak I Y00,1-00)P(a e2 )P0 /00)P(2-00)P(0- 2)P(x I 19,)
k=1 j=1

(8)

The hierarchical linear model is incorporated into the hierarchical measurement model via the

prior distribution for the latent trait parameter, p (e I a,o-,2). Based on the normal distribution specified

earlier for the latent trait parameter, the prior distribution for the students' latent trait parameters is

conditional upon the level-1 random intercept and the level-1 error variance of the hierarchical linear

model,

K PI'

P(e9 I a,0-nocrin
1 exp[ 1 /

ak )
k=1 j=1 V27Z6E2. 26, (9)

The prior distribution for the level-1 random intercept can be constructed by assuming that the

level-1 random intercept a, is normally distributed with a mean of the level-2 fixed intercept yoo and a

variance of the level-2 error variance 1-00,

1 1 2

P(ak I roo, Too) exp[--(ak no)
Ni2groo Iroo

(10)

Combining the prior distribution for the latent trait parameter (10) and the likelihood equation (3), the full

conditional posterior for the latent trait parameter of an individual student is

P °pi 491 j><k> Ce2 , a,1-00,Y00,x)

exp xok (Ojk )1
i=1 1

ex p[
riLi+exp(Oik- )1

2o-,

1.1

8



7

The full conditional posterior distribution for an individual student is conditional on the remaining

students' latent trait parameters, as indicated by the notation 8,,,< in (11). Since (11) is not the kernel

of any standard probability distribution, this posterior conditional distribution cannot be directly sampled

from, necessitating an alternate strategy to generate random draws.

The full conditional probability distributions of the level-1 random intercepts and the level-2

fixed intercept can be expressed as products of the likelihood equation and normal prior distributions.

Utilizing (10) as the prior distribution for the level-1 random intercept ak, the full conditional probability

distribution for this parameter is

P(akle,,01,ce<k>5cre2 ,roo,r00,x)cc

1 2 1 x-InA \ 2

eXp
2r

[ (aky)1exp[ vx jk )1
,=,

(12)

Since this is a case of normal data, with a normal prior distribution, the full conditional probability

distribution can be reformulated as a normal distribution from which sampling is easy (Box & Tiao, 1973;

Seltzer & Ang, 1999),

where

ak Normal(ifek,), (13)

ak =2kOk + (1 A'k)r00

Vk =
(nk

1

2 4- )

(14)

(15)

(16)

In the case of a one-way ANOVA with random effects, the expected value of the level-1 random

intercept is the level-2 fixed intercept y . A uniform prior for the level-2 fixed intercept will be
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assumed. The full conditional probability distribution of this parameter as a function of the conditional

distributions of the level-1 random intercepts is

P(70010,,a,cr TOO X °C p(a I Y00) 1-00) P(roo)

1 + \2ocexp[--,LkYooak) i
LT00 k=1

(17)

(18)

As a consequence of the manipulation of (18), the full conditional probability distribution for the level-2

fixed intercept y is a normal distribution,

yooNormal(d,r0c/(), (19)

with a mean of the average of all level-1 random intercepts d , taken across all K level-1 groups.

Several prior distributions for the level-1 error variance o and the level-2 error variance Too will

be considered here. In particular, both informative and noninformative prior distributions will be

assumed. Utilizing the uniform distribution as a prior distribution provides the least amount of prior

information possible. The use of this prior distribution suggests that any value for the estimate of the

parameter is equally likely and yields a full conditional probability that is dependent only upon the

likelihood equation. The inverse of the full conditional probability distributions for the level-1 error

variance o and the level-2 error variance Too , assuming uniform prior distributions, are kernels of

gamma probability distributions,

2 2
P(cre1195,0" ,a, Yoo roo x)

,a,cre, x)P(I-001(9,501 2

1 )22
cre

'00

N

exp

K

2

ex

1 K / \2
ak )

Yoo )2

(20)

(21)

26e k=i J=1

[

1
K

kak
[

21-00 k=1

The conditional probability distributions for the variances can be rewritten as gamma probability

distributions,



(

12 Gamma
cse

1 Gamma
Too

N 2 2

2
DOA ak )

2

k=1 j=1

K 2 2

2
K

1(ak Y 00)2
k=1

9

(22)

(23)

When we wish to incorporate prior knowledge we may have about a particular parameter, the

scaled inverse chi-square distribution as an informative prior distribution for the level-1 or level-2 error

variances. When this prior distribution is assumed for the level-1 and level-2 error variances, the inverse

of these conditional probability distributions are found to be kernels of a gamma distribution,

(

2
Gamma

1 Gamma
Too

N + v 2

2
(Oik cek

2

k=1 j=1

K + v 2

2 S +I(ce,-700)2
k=1

(24)

(25)

The scaled inverse chi-square distribution can be scaled to reflect the increasingly informative prior

information one may have about the error variances. As the parameter v becomes larger, this distribution

becomes more concentrated at the mean, S /(v 2). For values of v between 1 and 4, the variance of the

scaled inverse chi-square distribution 2SY[(v 2)2 (v 4)] is infinite, and this prior then becomes weak

relative to the data.

The full conditional distributions for the item difficulty parameters remain to be developed.

Recall that the prior distribution for the item difficulty parameters is a standard normal distribution.
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Consequently, the full conditional distribution for item i is similar, but slightly simpler in form to that of

the latent trait Ojk ,

P &i> 9 Zoo roci,x)

exp xok (OA

K ni

k.1 1=1 exp(-2) .

T7 T
eXP(19jk

k=1 j =1

(26)

As with the conditional distribution of the latent trait parameter, the full conditional distribution for the

item difficulty parameters does not have a common distributional form.

The full set of conditional probability distributions developed above forms the basis for the Rasch

hierarchical measurement model. Aside from the latent trait and item difficulty parameters, the

conditional probability distributions for the remaining model parameters are proportional to common

distributions and thus easy to sample from directly. The conditional probability distributions for the

latent trait and the item parameters cannot be directly sampled from, and the Metropolis-Hastings (M-H)

algorithm will be employed to draw samples from these conditional probability distributions.

Examples: Simulated Balanced & Unbalanced Data Sets

Two different simulated data sets, both having a two-level hierarchical structure, were created to

illustrate the Rasch hierarchical measurement model. The first data set is balanced and represents an ideal

data situation, with each level-2 group containing an equal number of level-1 units. A practical example

of this data set occurs when a researcher gathers the same number of repeated measurements on a sample

of students. The second data set is a sparse data set that would occur when a small and unequal number

of measurements are made on a sample of students. This data set illustrates a more realistic situation that

a researcher may experience, and was used to evaluate the effectiveness of the model for challenging data

situations.

The structure of the first simulated data set replicated the structure of a data set from the Sloan

Study of Youth & Social Development utilized in a study conducted by Maier (2000). This data set is

referred to as the unbalanced data set and consists of N=742 response strings to 10 items. The level-1
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response string units are sparsely dispersed within level-2 groups with three-quarters of the level-2 groups

containing two to three level-1 response string units, and the remaining level-2 groups containing between

four and six level-1 response string units. The second simulated data set, referred to as the balanced data

set, has the same total number of response string units, but with a different grouping structure that

consists of K=53 level-2 groups, each with nk=14 level-1 response string units.

The response strings for each of the two data sets were generated in the following manner. First,

values for the item difficulty parameters were generated from a standard normal distribution. Next, values

of the latent trait parameters were generated using values of the level-2 intercept and level-1 and level-2

error variances based on results from descriptive and IRT analyses of the data set constructed for the

Maier (2000) study. The actual values used for the data simulation were 0.2835 for the level-1 error

variance, 0.7099 for the level-2 error variance, and 0.0001 for the level-2 fixed intercept. Finally, the

probability that a level-1 unit would answer an item correctly was calculated using the Rasch IRT model

and the generated latent trait and item difficulty parameter values. To prevent the model from fitting the

data perfectly, overdispersion was built into the simulation of the response strings: a unit's response for a

particular test item was assigned a value of one if the calculated probability of a correct response

exceeded a randomly generated uniform number.

Implementation of Gibbs Sampling & the Metropolis-Hastings Algorithm

Both simulated data sets were analyzed and the posterior distributions of the model parameters were

produced using Gibbs sampling. The Metropolis-Hastings algorithm was used to draw samples from the

conditional distributions of the latent trait and item difficulty parameters. For both the balanced and

unbalanced data sets, two analyses were completed to produce a total of four complete analyses: one

analysis assumed uniform prior distributions for the level-1 and level-2 variances while the other assumed

scaled inverse chi-square prior distributions for the error variances. In particular, a scaled inverse chi-

square prior having v =10 degrees of freedom and a mean S = 2.268 was assumed for the level-1

variance a . The scaled inverse chi-square prior assumed for the level-2 error variance roo had the same

13
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degrees of freedom, but a mean of S = 5.689. Swaminathan & Gifford (1982) suggested choosing

5 5_ v 15 when utilizing this prior distribution with a Rasch IRT model.

The candidate-generating density q(x, y) of the Metropolis-Hastings algorithm used to simulate

the latent trait and item difficulty parameters was chosen to be a normal distribution having a mean of the

current state of the chain x and a standard deviation cn. The form of this candidate-generating density

produces the random-walk Metropolis-Hastings algorithm Since the candidate-generating density is

symmetric (q(z) = q(z)), the probability of the chain moving from the current value x to the proposed

value y reduces to

a(x, y) = min {7r(y) 1} .

g(x)
(27)

The standard deviation c, of the candidate-generating density was fixed to achieve an acceptance

proportion of roughly 0.5 (Gelman, Roberts, & Gilks, 1996; Patz & Junker, 1999b). For the balanced

data set, in the case of uniform priors for the level-1 and level-2 error variances, the acceptance

proportion was 0.5377 for the item difficulty parameters specifying a standard deviation cn=0.15 and

0.4500 for the latent trait parameters specifying c---1.0. Assuming scaled inverse chi-square priors for the

level-1 and level-2 error variances and using the same values of cn, the proportion of acceptance was

0.5388 for the item difficulty parameters and 0.4441 for the latent trait parameters. For the unbalanced

data set assuming uniform priors for the error variances, the acceptance proportion was 0.5418 for the

item difficulty parameters and 0.4871 for the latent trait parameters. The acceptance proportions utilizing

the same data set and assuming scaled inverse chi-square priors for the error variances were 0.5410 for

the item difficulty parameters and 0.4785 for the latent trait parameters.

The values of the Markov chains of each model parameter were used to generate the

corresponding marginal distribution for each the parameter estimates. The starting values used for the

analyses appear in Table 1. The initial value used for the latent trait parameter of each level-1 unit was

simply the raw score averaged across test items. For all analyses, 30,000 iterations of the algorithm were
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run. The first 1,000 iterations were considered to be the burn-in iterations and these corresponding

deviates were discarded. The resulting 29,000 iterations formed the basis for parameter estimation.

Insert Table 1 Here

Results of Analysis

The results of the analyses appear in Tables 2-5 for the balanced and unbalanced data sets. The

true values of each of the model parameters are listed in the second column of the table. This value can

be compared to the mean of the deviates over 29,000 iterations. The variance of the posterior distribution

is also calculated. The time-series standard error of the estimate of the mean can be used as an estimate

of the Monte Carlo error. The final column of the table specifies the 95% credibility interval for the

deviates.

Insert Table 2 Here

Insert Table 3 Here

Insert Table 4 Here

Insert Table 5 Here

Examining the results for the item difficulty parameters first, the agreement between the mean of

the posterior distribution of the estimate and the true value for the parameter is quite good. For both data

sets, the true value lies within the 95% credibility interval for all but one of the item difficulty parameters.

The true value of Item 9 lies just outside the 95% credibility interval of the estimate, but within the 97.5%

credibility interval. The standard error of the estimate of the mean of the item difficulty parameter

estimates range from a high value of 0.00142 to a low value of 0.00088, estimated by dividing the square

root of the spectral density estimate by the sample size. These statistics were calculated using CODA

software (Best, Cowles, & Vines, 1995).

The particular number of burn-in iterations was chosen based on examination of autocorrelation

values and time series plots. Examination of these plots and statistics showed that most all of the Markov

chains exhibited common behavior that was indicative of a rapidly mixing Markov chain. The notable

exception is the level-1 error variance ce2, which will be addressed separately below. Aside from this
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particular parameter, the time series plots of the remaining parameter estimates show acceptable mixing

patterns. Figure 1 shows time-series plots of the Markov chain for Item 2, unbalanced data set, assuming

uniform priors for the level-1 and level-2 error variances and Figure 2 shows the corresponding plot for

the balanced data set assuming scaled inverse Chi-square priors. Figures 3-6 show the corresponding plots

for the level-2 and the level-1 error variances. The first four figures provide good examples of the type of

rapid mixing that occurred with the Markov chains of most of the remaining parameter estimates.

However, the time-series plots for the level-1 error variance show a lower rate of mixing, perhaps

indicating that the Markov chain may not have converged.

Insert Figure 1 Here

Insert Figure 2 Here

Insert Figure 3 Here

Insert Figure 4 Here

Insert Figure 5 Here

Insert Figure 6 Here

The autocorrelation values of the Markov chains for most of the parameters rapidly approach zero

as the lag increases. Table 6 shows autocorrelation values corresponding to lags of 1, 5, 10, and 50 for

the Markov chains of all parameter estimates of the balanced data set. The values of autocorrelation for

the unbalanced data set show the same pattern. As indicated in this table, the autocorrelation values

rapidly approach zero for most all of the parameter estimates, a property that indicates rapid Markov

chain mixing. As with the time-series plots, the notable exception to this behavior is the level-1 error

variance o-2.

Insert Table 6 Here

Exploration of Level-1 Error Variance

Additional analyses were completed to further examine convergence and mixing rates of the

Markov chains for the level-1 error variance and the Gelman & Rubin (1992) convergence diagnostic was

calculated for corresponding Markov chain. Since this diagnostic requires multiple Markov chains, three
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separate sets of Markov chains were run for each of the two simulated data sets, assuming three different

starting values for the level-1 error variance. These starting values were 1.0, 3.0, and 5.0, while the

starting values for the other parameters were retained from the first analysis. The Gelman & Rubin

diagnostic was calculated for the three chains of the level-1 error variance using CODA software. All

three Markov chains for the balanced and unbalanced data sets met the Gelman & Rubin criteria for

convergence, suggesting that the Markov chains of the level-1 error variance converged to a stationary

distribution.

Autocorrelation values of this additional set of Markov chains were examined to assess the rate of

mixing. These values were comparable to that of the original Markov chains of all the model parameters.

These findings suggest that applying a thinning interval to the Markov chain for the level-1 error variance

may be an appropriate strategy to improve mixing rate. Autocorrelation values for Markov chains with

different thinning intervals were examined and a thinning interval of 3 was identified as the best option

because it considerably reduced the autocorrelation without increasing the Monte Carlo variance

substantially.

Overall, the additional set of Markov chains for the level-1 error variance behaved similarly to the

chains originally simulated. As with the original Markov chains, the 95% credibility intervals (averaged

from the three Markov chains) contain the true value of the level-1 error variance. In most cases, the

posterior distributions are not centered on the true value of the parameter. For both data sets, the mean of

the posterior distribution for the level-1 error variance in the unbalanced data set slightly overestimates

the true value, while the posterior means for the level-2 error variance slightly overestimates the true

value of the parameter.

Both the original Markov chain and the additional set of Markov chains demonstrate similar

behavior for the error variance estimates. Clearly this behavior was not a statistical artifact present only

in the original Markov chains. It was decided to investigate whether this behavior was related to the true

values of the error variance parameters, especially in the case of the level-1 variance, which is fairly close

to zero. New balanced and unbalanced Rasch HMM data sets were simulated using a value of one for the
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level-1 variance 62. Model parameters were estimated using the same MCMC algorithm as used for the

original data sets. The first 1000 iterations were discarded as the burn-in, and the Markov chains mixed

adequately, as indicated by examination of the time-series plots. Again, the 95% credibility intervals

contain the true values of the parameters; again, the posterior distributions are not centered on the true

value of the parameters.

Since the results for the new data sets are similar to that of the original data sets, this pattern does

not seem to be related to the true value of the level-1 variance. However, the pattern could be

conceivably linked to the process used to simulate the data sets. As mentioned previously, overdispersion

was built into the model by comparing the probability of a correct response to a randomly generated

uniform deviate. This procedure may very well account for the discrepancies between posterior means

and true values of the level-1 and level-2 variances. And, although the Markov chains of the level-1 error

variance seem to exhibit a lower rate of mixing, the chains meet the criterion of a variety of convergence

diagnostics indicating stationarity had been reached.

Comparison to a Two-Step Approach

To illustrate how the Rasch hierarchical measurement model performs relative to a traditional

two-step approach, the simulated balanced data set was reanalyzed. First, estimates of the latent trait

parameter for each of the N=742 response strings were produced according to a Rasch item response

model, using the BIGSTEPS program (Wright & Linacre, 1993). The true values of the item difficulty

parameters were given for this step, so as to make equating unnecessary. The resulting latent trait

parameter estimates were then used as the outcome variable for a two-level hierarchical linear model that

utilized the same hierarchical structure as the simulated balanced data set. The hierarchical coefficients

were estimated using the HLM program (Bryk, Raudenbush, & Congdon, 1996). The results of this

analysis appear in Table 7. For this particular data set, the two-step analysis approach grossly

overestimates the level-1 random error variance and underestimates the level-2 random error variance

while correctly estimates the level-2 fixed intercept. Clearly in this case, the Rasch RM1VI models the data

much better than the two-step strategy.
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Insert Table 7 Here

Implementation and Future Research

To obtain estimates of the hierarchical measurement model parameters, the Gibbs sampling

algorithms were implemented in a computer program written in Visual C++. The object-oriented

capabilities of C++ make this language a natural fit for the nested multi-parameter structure of the

hierarchical measurement model. To produce estimates for Rasch hierarchical measurement model 18

and 24 minutes were required to run 30,000 iterations of the Gibbs sampling algorithm on a CPU with a

450 MHz processor and 192 MB of memory. CODA software (Best et al., 1995) was used as a post-

Gibbs analysis tool. This software was used to calculate estimates of the mean, standard error of the

mean, and the variance of the posterior distributions of the model parameters, as well as to generate time-

series and autocorrelation values.

Implementation time.

The Rasch hierarchical measurement model is very specialized because it appropriate for

dichotomous responses only and does not allow incorporation of any level-1 or level-2 covariates. The

usefulness of hierarchical measurement models hinges on the degree to which these models can be

generalized. Generalization can occur along at least three avenues. Different IRT models can be

incorporated into the model. Work is currently being done that integrates a Partial Credit IRT model with

a 2-level hierarchical linear model, resulting in a Partial Credit HIVIM. Another way to expand the

hierarchical measurement model is to consider an alternative distribution for the level-1 random intercept

or the level-2 error variances. A hierarchical measurement model is currently being investigated that

utilizes a t-distribution for the latent trait parameters. This model would allow outlier level-1 groups to be

modeled appropriately. Additionally, more complex item response models and hierarchical linear models

will also be considered.

19
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Table 1: Starting Model Parameter Values used for Analyses of Rasch RIVIM Data Sets

Model Parameter
Level-1 Variance 6e2

Level-1 Intercept, ak

Level-2 Variance Too

Level-2 Intercept y,
Latent Trait, eik
Item Parameters, 4,

Starting Value
0.35

0.50

1.00

0.50

Average raw score
0.00
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Table 2: Item Difficulty Parameter Estimates under Uniform and Scaled Inverse Chi-square Prior
Distributions for Level-1 and Level-2 Error Variances, Rasch HMM Balanced Data Set

Model
Parameter True Value Mean

Time-series
SE of Mean Variance

95% Credibility
Interval

4o -1.95903
Uniform -1.89 0.00142 0.00912 (-2.090, -1.710)

Inverse X2 -1.89 0.00136 0.00922 (-2.080, -1.700)

41 0.75865
Uniform 0.791 0.00101 0.00674 (0.632, 0.953)

Inverse X2 0.788 0.00106 0.00658 (0.627, 0.945)

42 1.22899
Uniform 1.32 0.00117 0.00766 (1.150, 1.490)

Inverse X2 1.32 0.00114 0.00803 (1.140, 1.490)

43 0.46361
Uniform 0.394 0.00094 0.00618 (0.241, 0.549)

Inverse X2 0.392 0.00096 0.00612 (0.238, 0.547)

44 -0.61123
Uniform -0.548 0.00100 0.00605 (-0.703, -0.395)

Inverse X2 -0.548 0.00096 0.00594 (-0.700, -0.396)

45 -1.07601
Uniform -1.05 0.00102 0.00679 (-1.210, -0.887)

Inverse X2 -1.04 0.00106 0.00666 (-1.210, -0.885)

46 -0.09302
Uniform -0.177 0.00091 0.00593 (-0.326, -0.025)

Inverse X2 -0.177 0.00090 0.00594 (-0.329, -0.026)

47 -0.26429
Uniform -0.198 0.00088 0.00573 (-0.346, -0.050)

Inverse X2 -0.196 0.00092 0.00585 (-0.345, -0.044)

48 0.62427
Uniform 0.595 0.00093 0.00612 (0.441, 0.749)

Inverse X2 0.591 0.00096 0.00616 (0.437, 0.744)

49 0.92816
Uniform 0.766 0.00102 0.00654 (0.609, 0.925)

Inverse X2 0.766 . 0.00102 0.00645 (0.611, 0.924)
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Table 3: Posterior Distribution of Item Difficulty Parameters under Uniform and Scaled Inverse Chi-
square Prior Distributions for Level-1 and Level-2 Error Variances, Rasch HMIM
Unbalanced Data Set

Model
Parameter True Value Mean

Time-series
SE of Mean Variance

95% Credibility
Interval

40 -1.95903
Uniform -1.96 0.00155 0.0104 (-2.160, -1.760)

Inverse X2 -1.95 0.00143 0.0104 (-2.150, -1.750)

41 0.75865
Uniform 0.771 0.00104 0.00638 (0.614, 0.929)

Inverse X2 0.769 0.00103 0.00637 (0.613, 0.925)

42 1.22899
Uniform 1.25 0.00109 0.00733 (1.080, 1.420)

Inverse X2 1.24 0.00110 0.00694 (1.080, 1.410)

3
0.46361

Uniform 0.470 0.00095 0.00613 (0.315, 0.622)
Inverse X2 0.465 0.00092 0.00601 (0.312, 0.617)

44 -0.61123
Uniform -0.725 0.00099 0.00653 (-0.887, -0.566)

Inverse X2 -0.721 0.00096 0.00643 (-0.879, -0.564)

45 -1.07601
Uniform -1.04 0.00108 0.00714 (-1.210, -0.879)

Inverse X2 -1.04 0.00115 0.00726 (-1.210, -0.869)

6 -0.09302
Uniform -0.108 0.00095 0.00604 (-0.263, 0.045)

Inverse X2 -0.109 0.00096 0.00601 (-0.261, 0.042)

47 -0.26429
Uniform -0.262 0.00098 0.00607 (-0.414, -0.108)

Inverse X2 -0.260 0.00097 0.00613 (-0.414, -0.105)

48 0.62427
Uniform 0.620 0.00094 0.00615 (0.467, 0.774)

Inverse X2 0.619 0.00091 0.00594 (0.466, 0.770)

40 0.92816
Uniform 0.985 0.00102 0.00681 (0.821, 1.150)

Inverse X2 0.980 0.00105 0.00664 (0.822, 1.140)
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Table 4: Hierarchical Parameter Estimates under Uniform and Scaled Inverse Chi-square Prior
Distributions for Level-1 and Level-2 Error Variances, Rasch HMIVI Balanced Data Set

Model
Parameter True Value Mean

Time-series
SE of Mean Variance

95% Credibility
Interval

Yoo -0.000125
Uniform -0.0893 0.00087 0.01232 (-0.306, 0.129)

Inverse X2 -0.0888 0.00089 0.01210 (-0.303, 0.126)
2 0.283486

Uniform 0.282 0.00144 0.00225 (0.196, 0.380)
Inverse X2 0.266 0.00132 0.00187 (0.188, 0.355)

Too 0.709858
Uniform 0.600 0.00146 0.0196 (0.380, 0.920)

Inverse X2 0.572 0.00116 0.0137 (0.383, 0.840)

Table 5: Posterior Distribution of Hierarchical Parameters under Uniform and Scaled Inverse Chi-square
Prior Distributions for Level-1 and Level-2 Error Variances, Rasch HMM Unbalanced Data
Set

Model
Parameter True Value Mean

Time-series
SE of Mean Variance

95% Credibility
Interval

Yoo -0.000125
Uniform -0.0722 0.00076 0.00325 (-0.040, 0.183)

Inverse X2 -0.0722 0.00078 0.00312 (-0.038, 0.182)
2 0.283486

Uniform 0.409 0.00204 0.00493 (0.282, 0.556)
Inverse X2 0.373 0.00187 0.00412 (0.255, 0.508)

Too 0.709858
Uniform 0.580 0.00180 0.0078 (0.420, 0.769)

Inverse X2 0.576 0.00157 0.0064 (0.431, 0.745)
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Table 6: Autocorrelation Values as a Function of Lag, Rasch HMM Balanced Data Set

Model
Parameter

Level-1 & Level-2
Priors Lag 1

Autocorrelation
Lag 5 Lag 10 Lag 50

4o Uniform 0.69300 0.19200 0.06220 0.00811
Inverse X2 0.68900 0.19200 0.05730 -0.01010

41 Uniform 0.66400 0.13900 0.02050 0.01200
Inverse X2 0.65900 0.13900 0.03940 0.00181

42 Uniform 0.67000 0.15200 0.02890 0.00624
Inverse X2 0.67400 0.15100 0.03710 0.00417

43 Uniform 0.65300 0.11100 0.01990 0.00976
Inverse A'2 0.65200 0.13700 0.01700 -0.00305

44 Uniform 0.65200 0.12900 0.02600 -0.00388
Inverse X2 0.65200 0.12800 0.01580 0.00237

45 Uniform 0.66500 0.15900 0.02660 -0.01520
Inverse X2 0.66700 0.14700 0.02940 -0.00038

46 Uniform 0.65500 0.13600 0.01790 0.00751
Inverse X2 0.64800 0.12600 0.01110 -0.00109
Uniform 0.63700 0.11400 0.01240 -0.00089

Inverse X2 0.64400 0.12500 0.03240 0.00175

48 Uniform 0.65200 0.13700 0.01900 -0.00673
Inverse X2 0.64600 0.13900 0.02920 -0.00078

49 Uniform 0.66500 0.14200 0.02180 0.00538
Inverse X2 0.65900 0.14400 0.04990 0.00386

Yoo Uniform 0.09960 0.03880 0.02070 0.00588
Inverse X2 0.09790 0.04480 0.03570 -0.00230

(yet Uniform 0.90100 0.76500 0.62600 0.12000
Inverse X2 0.89600 0.75800 0.61400 0.15000

Too Uniform 0.18600 0.08570 0.05030 0.01060
Inverse X2 0.16600 0.08800 0.06140 0.01250

Table 7: Estimates of Hierarchical Parameters from Two-Step Analysis, Rasch HMM Balanced Data Set

Model
Parameter Coefficient SE T-ratio

Yoo -0.109593 0.113543 -0.965
0. 2= 0.951460 (SE=0.78255)
t00=0.612390 (SE=0.97543)
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Figure 1: Time-series Plot of Item 2, Rasch 1-INIM Unbalanced Data Set, Uniform Priors for
Level-1 and Level-2 Error Variances

Figure 2: Time-series Plot of Item 2, Rasch I-IMM Balanced Data Set, Scaled Inverse Chi-square
Priors for Level-1 and Level-2 Error Variances

Figure 3: Time-series Plot of t00, Rasch HIVIIM Unbalanced Data Set, Uniform Priors for Level-1
and Level-2 Error Variances
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Figure 4: Time-series Plot of T00, Rasch FIMM Balanced Data Set, Scaled Inverse Chi-square
Priors for Level-1 and Level-2 Error Variances

Figure 5: Time-series Plot of (72, Rasch HNIM Unbalanced Data Set, Uniform Priors for Level-1 and
Level-2 Error Variances

Figure 6: Time-series Plot of 6c2, Rasch HAIM Balanced Data Set, Scaled Inverse Chi-square Priors for
Level-1 and Level-2 Error Variances
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